
Security Assessment

Alpenglow
Certificate Assessment Date: August 28, 2025

SUMMARY Alpenglo
w

Certificate Assessment Date: August 28, 2025

Alpenglow
The security assessment was prepared by CertiK, the leader in Web3.0 security.

Executive Summary

TYPES

Smart

ontract

ECOSYSTEM
Alpenglow

METHODS
Manual Review, Static Analysis

LANGUAGE
Swift

TIMELINE
Delivered on 8/28/2025

KEY COMPONENTS
N/A

Vulnerability Summary

5
Total Findings

3
Resolved

0
Mitigated

2
Partially Resolved

0
Acknowledged

0
Declined

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

2 Minor 2 Partially Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

3 Informational 3 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

TABLEOF CONTENTS Alpenglo
w

TABLEOF CONTENTS Alpenglow

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Findings

GLOBAL-01 : SDK uses crypto modules that are no longer active

GLOBAL-02 : FrontEnd use Insecure Cryptographic Primitives

GLOBAL-03 : Risky Implementation on Memory Free Operation

GLOBAL-04 : Hard-coded Secrets Found in SDK code

GLOBAL-05 : Potential Integer Overflow Risk in Data Handling.

Appendix

Disclaimer

AUDIT SCOPE Alpenglo
w

ID Repo File SHA256 Checksum

AUDIT SCOPE Alpenglow

0 files audited

APPROACH& METHODS Alpenglo
w

sha1

0b02b2b5c25d7b00f4d52a4c90fa89f9ed736f37 FE.zip

1188830aa5af47af8c148dccc755cc5571b288c9 Mobile.zip

094d5a1d0d39cdd287a4a874d41706978bf321e0 sdk.zip

APPROACH & METHODS Alpenglow

Introduction

This report has been prepared for Alpenglow to identify issues and vulnerabilities in the supplied source code snippets of the

front- end, mobile (iOS/Android), and SDK components. The code snippets are supplied to us in individual zipped files, each

having the following hash:

The primary goal of this engagement was to scrutinise the source code to gauge the application's resilience against various

logic issues and vulnerabilities targeting its controls and functionalities. This process was essential for identifying

vulnerabilities and weaknesses within the codebase, thereby enabling the provision of tailored recommendations to enhance

and fortify its security posture.

This security assessment is an extension of the previous Alpenglow's Blackbox penetration test performed on the

Alpenglow wallet. The findings of the prior assessment are documented separately and are not included in this report.

Scope of the Auditing

During this audit review process, CertiK security team has reviewed the following components.

A portion of Mobile App Source Code: The mobile source code contains both the iOS and Android components

responsible for wallet creation/import, password management, and data backup to cloud platforms.

A Front End Module: The front-end source code contains the ReactJS UI components for the wallet functionalities, as well

as the JS controllers used for interacting with the keyring.

Multiple Modules of Wallet SDK: The SDK contains the following components:

Bitcoin SDK: written in Golang, it is used to interact with the Bitcoin Mainnet or Testnet.

okwallet-core: mnemonic generator and wallet management.

src: Javascript/Typescript component containing BIP32 and BIP39 support and various mathematical modules,

ranging from elliptic curve calculation to hashing algorithms.

Summary of Findings

APPROACH& METHODS Alpenglo
w

Overall we found the modules being reviewed are secure against the risks being considered in this audit process. The exact

risk being reviewed and our evaluation results are presented below in separate sections.

Through this static review process, we found 5 security issues. Three of them are low risk and informational findings, and two

of them are with undetermined risk levels. They are likely low risk, but we can not make a final determination due to the

scope limit.

Limitations

The following limitations were encountered during the audit, which significantly restricted our ability to perform a

comprehensive and thorough security assessment.

The constraints outlined below limit our ability to holistically evaluate the codebase and assess the overall security of the

applications and the SDKs:

Only certain parts of the codebase were shared, it is NOT possible to establish how/where certain functions are used

and if memory cleanup is done correctly.

Given that only partial code was shared, we cannot perform dynamic analysis. Dynamic analysis would clarify if there

are any signs of PII leakage, either through application memory or filesystem.

For the third party dependencies used, the versions could not be established. Some of the libraries used have

security vulnerabilities in older versions and it is not possible to determine if the client is at risk or not.

Mobile app configurations were not shared. (AndroidManifest.xml / Info.plist)

The shared codebase makes extensive use of internal dependencies which could not be audited. This makes it

impossible to determine if the client is exposed to dependency confusion or supply chain attacks.

Mobile Application Audit Summary

Twomobile applications, an iOS app written in Swift + Objective-C and an Android app written in Kotlin, were provided by the

client. The application code mostly concerned wallet operations, the entire source code was not provided but sensitive

operations regarding wallets and backups could be analyzed.

Threat Vectors Being Reviewed

Our testing was focused on the following attack vectors:

Dependency Confusion / Supply Chain attacks

Mobile apps mostly use Alpenglow’s internal libraries, most of which were not

provided. We check whether the application depends on any known risky third-party

packages.

APPROACH& METHODS Alpenglo
w

Insecure Data Storage

The application allows users to backup their wallets on Huawei Drive, Google Drive or iCloud. We check

whether the backup process is implemented following good coding practices.

Insecure Cryptographic Primitives

Check whether the cryptographic primitives in use adhere to the standards.

Memory Manipulation

Check whether the applications adopt good memory operation practice.

Hard-coded Secrets

We check whether the applications contain or make use of hard-coded secrets.

Summary Review Results

Below is our summary of the code security status

Dependency Confusion / Supply Chain attacks

Mobile apps mostly use Alpenglow’s internal libraries, most of which were not provided. The other

third-party dependencies that are used by the applications are either static or primitives of the

respective platform which are unlikely to contain maliciouscode.

Insecure Data Storage

The sensitive information corresponding to each wallet is encrypted throughout the lifecycle of the

application. The password is encrypted with an AES key that is generated at runtime. The sensitive

information is also not logged or stored unencrypted on the filesystem.

We confirm these backups are encrypted with a symmetric key that is derived from a user-supplied

password. A password is required to enable backups.

Insecure Cryptographic Primitives

We confirm that the cryptographic primitives in use adhere to the standards. The apps make use of

APPROACH& METHODS Alpenglo
w

strong symmetric and asymmetric encryption algorithms.

Memory Manipulation

The applications generally manage memory well. An information recommendation is provided in the

finding section.

No UAF risks were identified in the client’s source code.

Hard-coded Secrets

The applications do not contain or make use of hard-coded secrets.

SDK Audit Summary

The following components were provided by the client for the presented engagement:

Bitcoin SDK: written in Golang, used to interact with the Bitcoin Mainnet or Testnet.

okwallet-core: written in Golang, used for mnemonic generation and wallet management.

src: Javascript/Typescript component containing BIP32 and BIP39 support and various mathematical modules,

ranging from elliptic curve calculation to hashing algorithms.

Threat Vectors Being Reviewed

Our testing was focused on the following attack vectors:

Dependency Confusion / Supply Chain attacks

The SDK uses multiple sources for the module importing within both the JS and Golang components of

the SDK. The sources range from local files to libraries located in Alpenglow’s internal repositories, as

well as third-party modules.

We check whether the application depends on any known risky third-party packages.

Data Storage

We check whether the data access to the storage is limited and secure.

Cryptographic Primitives

APPROACH& METHODS Alpenglo
w

storage

Check whether the cryptographic primitives in use adhere to the standards.

Hard-coded Secrets

We check whether the applications contain or make use of hard-coded secrets.

Data Handling

We check whether the implementation adopt good security practices on handling data processing.

Summary Review Results

Our testing was focused on the following attack vectors:

Dependency Confusion / Supply Chain attacks

We found some component use modules that are no longer under active development. Please find

detailed information in the finding section.

The version of

source code.

used in the client’s SDK could not be established based on the shared

he internal repositories used within the imports are locatedat

.

and

Making use of internal dependencies is recommended but it is not possible to establish if the referenced

internal dependencies could be vulnerable to supply chain attacks, as they were not shared in the scope

of the audit. It’s strongly recommended to review the configuration and contents of the third-party

modules imported within the applications.

Data Storage

The okwallet-core library is used for mnemonic generation and wallet management. The data is

transmitted within the function calls, mostly through the object.

Cryptographic Primitives

The cryptographic primitives in use adhere to the standards. The apps make use of strong symmetric

and asymmetric encryption algorithms. Hard-coded Secrets

We found a hard-coded secret in the code, however, no function calls towards these functions have

been observed within the provided codebase. Details are provided in the finding section.

crypto-js

okinc.com(64.98.135.50)

gitlab.okg.com (10.254.3.52)

APPROACH& METHODS Alpenglo
w

Data Handling

We identified a snippet of code that could allow an integer overflow if a sufficiently large integer is cast

as a uint32. This function is actively used in the codebase but it is not possible to determine if there is a

real risk of an integer overflow in the client’s codebase, as we cannot establish the runtime values of the

provided parameters.

Front-End Audit Summary

The supplied codebase contains the ReactJS UI components for the wallet functionalities, as well as the JS controllers used

for interacting with the keyring. The keyring controllers offer support for multiple environments: BTC, ETH, Ronin, Harmony,

and Cardano.

Threat Vectors Being Reviewed

Our testing was focused on the following attack vectors:

Dependency Confusion / Supply Chain attacks

We check whether the application depends on any known risky third-party packages.

Data Storage

We check whether the data access to the storage is limited and secure.

Cryptographic Primitives

Check whether the cryptographic primitives in use adhere to the standards.

Hard-coded Secrets

We check whether the applications contain or make use of hard-coded secrets.

Data Handling

We check whether the implementation adopt good security practices on handling data processing.

APPROACH& METHODS Alpenglo
w

Summary Review Results

Below is a summary of our evaluation of front-end code against the above risks:

Dependency Confusion / Supply Chain attacks

The application mostly uses Alpenglow’s shared libraries, most of which were not provided. The other

third- party dependencies that are used by the applications are either static or primitives of the respective

platform which are unlikely to contain malicious code.

Data Storage

The sensitive information corresponding to each keychain is encrypted throughout the lifecycle of the

application within the Alpenglowwallet/app/scripts/controllers/keyrings/browser-passworder.ts file.

Insecure Cryptographic Primitives

The cryptographic primitives in use mostly adhere to the standards, with the following exception:

The random number generator is a custom implementation, which has a potential risk. Detail is provided

in the finding section.

Code Injection/Cross-Site Scripting

The application sanitizes the input before injecting it into the UI components through ReactJS’s

sanitization mechanism. Furthermore, vulnerable calls such as dangerouslySetInnerHTML were not

observed within the codebase.

Hard-coded Secrets

The application does not contain or make use of hard-coded secrets.

REVIEWNOTES Alpenglo
w

REVIEWNOTES Alpenglow

This security assessment is an extension of the previous Alpenglow's Blackbox penetration test performed on the

Alpenglow wallet. The findings of the prior assessment are documented separately and are not included in this report.

FINDINGS Alpenglo
w

SDK Uses Crypto Modules ThatAre No
GLOBAL-01

Longer Active

Coding

Issue
Partially Resolved

FrontEnd Use Insecure Cryptographic
GLOBAL-02

Primitives

Coding

Issue
Partially Resolved

Risky Implementation On Memory Free
GLOBAL-03

Operation

Coding

Issue
Resolved

GLOBAL-04 Hard-Coded Secrets Found In SDKCode
Coding

Issue
Resolved

Potential Integer Overflow Risk In Data
GLOBAL-05

Handling.

Coding

Issue
ResolvedInformational

Informational

Informational

Minor

Minor

ID Title Category Severity Status

FINDINGS Alpenglow

5
Total Findings

0
Critical

0
Major

0
Medium

2
Minor

3
Informational

This report has been prepared to discover issues and vulnerabilities for Alpenglow. Through this audit, we have uncovered 5

issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to complement

rigorous manual code reviews, we discovered the following findings:

GLOBAL-01 Alpenglo
w

GLOBAL-01 SDK USESCRYPTOMODULES THATARE NO
LONGER ACTIVE

Category Severity Location Status

Coding Issue Minor Partially Resolved

crypto-js

crypto-js

Crypto

crypto-js

Description

The SDK uses multiple sources for the module importing within both the JS and Golang components of the SDK. The JS

component (audit/src/index.ts) uses the module, which is nolonger under active development.

The Golang components (audit/src/index.ts) use the

recommended to replace the import with the native

module, which is no longer under active development. It’s

library.

Recommendation

It’s recommended to replace the import withthe native library.

Alleviation

The developers will replace the module in a futurerelease.

Crypto

GLOBAL-02 Alpenglo
w

Crypto.getRandomValues()

Math.random()

Math.random() JS function, which is cryptographically insecure.

Alpenglowwallet/app/scripts/controllers/keyrings/utils/rand
om.js

GLOBAL-02 FRONTEND USE INSECURE CRYPTOGRAPHIC
PRIMITIVES

Category Severity Location Status

Coding Issue Minor Partially Resolved

Description

We found the cryptographic primitives used a custom random number generation implementation. It’s using the

Recommendation

It’s strongly recommended to use the function.

Alleviation

The developers will replace the function with a more cryptographically secure generationmethod.

GLOBAL-3 Alpenglo
w

void tryToFreePtr(void **ptr)

{ if (ptr && *ptr) {

free(*ptr); // Free the allocated memory

*ptr = NULL; // Set the original pointer to NULL

}

}

GLOBAL-03 RISKY IMPLEMENTATIONON MEMORY FREE
OPERATION

Category Severity Location Status

Coding Issue Informational Resolved

Description

In the iOS app, we identified a snippet of code that potentially could free previously allocated memory. No concret memory

manipulation risks (UAF) were identified in the client’s source code.

The memory being free here (ptr) could be already freed in other calls, and ptr is not set to NULL (which is not a must in

free).

Recommendation

This snippet of code could be improved by null-ing the pointer values after free-ing, to prevent potential Use-after-Free (UAF)

vulnerabilities by protecting against a dangling pointer:

It’s also worth noting that if the pointer describes a nested structure, other nested pointers should also be freed beforehand,

to avoid memory leaks.

Alleviation

The Client fixed the issue in the code snippet that was sent after the engagement.

GLOBAL-4 Alpenglo
w

audit/okwallet-core/util/util.go:267

var AesHardKey = common.MD5("1697773335922")

// AesEncrypt AES 加密数据

func AesEncrypt(message, key string) (string, error)

{ if len(message) == 0 {

return "", fmt.Errorf("message is empty")

}

if len(key) == 0

{ key =

AesHardKey

}

return common.Encrypt(message, key)

GLOBAL-04 HARD-CODED SECRETS FOUND IN SDKCODE

Category Severity Location Status

Coding Issue Informational Resolved

Description

The okwallet-core component contains the AesEncrypt and AesDecrypt functions which use the encryption key that is

hardcoded at :

No function calls towards these functions have been observed within the provided codebase. If this code snippet is not

actively used, there are no security issues.However, if this code is being used in other parts of the client’s software,

this potentially poses a serious security problem.

Note: The reason this issue is undetermined is that we have only partial code. Although no reference to this hard coded

secret was found in the code given to us, we can not conclude that code not shared with us did not use this hard-coded

secretAs such, the Severity is set as Informational, however it could be higher.

Recommendation

Remove this hard-coded secret from code, and make sure no other place in the software use it.

Alleviation

The hardcoded secret was removed from the codebase.

GLOBAL-5 Alpenglo
w

bitcoin/brc20/util.go:15

strconv.ParseInt

strconv.ParseInt

GLOBAL-05 POTENTIAL INTEGER OVERFLOW RISK IN DATA
HANDLING.

Category Severity Location Status

Coding Issue Informational Resolved

Description

We identified a snippet of code that could allow an integer overflow if a sufficiently large integer is cast as a

snippet of code is foundhere:

. The

func ConvertToUint32(v string) uint32

{ i, _ := strconv.Atoi(v)

return uint32(i)

}

Note:This function is actively used in the codebase but it is not possible to determine if there is a real risk of an integer

overflow in the client’s codebase, as we cannot establish the runtime values of the provided parameters. As such, the

Severity is set as Informational, however it could be higher.

Recommendation

The snippet of code could be improved by using the function.

Alleviation

The new version of the codeuses the function in order toconvert the supplied string.

uint32

APPENDIX Alpenglo
w

Categories Description

APPENDIX Alpenglow

Finding Categories

Coding

Issue

Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

DISCLAIMER Alpenglo
w

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, con dentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. Youagree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT,WORK PRODUCT, OR OTHERMATERIALS, OR ANY

PRODUCTSOR RESULTSOF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” ANDWITH ALL

FAULTSAND DEFECTSWITHOUTWARRANTYOF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW,CERTIK HEREBY DISCLAIMS ALL WARRANTIES,WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISEWITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHERMATERIALS.WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLYDISCLAIMS ALL IMPLIEDWARRANTIESOF MERCHANTABILITY,

FITNESS FOR A PARTICULARPURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSEOF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTYOF ANY KIND THATTHE SERVICES, THE LABELS, THE ASSESSMENT REPORT,WORK PRODUCT, OR

OTHERMATERIALS, OR ANY PRODUCTSOR RESULTSOF THE USE THEREOF,WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDEDRESULT,BE COMPATIBLEOR WORKWITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE.WITHOUT LIMITATIONTO THE FOREGOING, CERTIK PROVIDES NO WARRANTYOR

DISCLAIMER Alpenglo
w

UNDERTAKING, AND MAKES NO REPRESENTATIONOF ANY KIND THATTHE SERVICEWILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDEDRESULTS, BE COMPATIBLEOR WORKWITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATEWITHOUT INTERRUPTION, MEET ANY PERFORMANCEOR

RELIABILITY STANDARDSOR BE ERROR FREE OR THATANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTSMAKES ANY

REPRESENTATIONOR WARRANTYOF ANY KIND, EXPRESSOR IMPLIED AS TO THE ACCURACY,RELIABILITY, OR

CURRENCYOF ANY INFORMATIONOR CONTENT PROVIDED THROUGH THE SERVICE. CERTIKWILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALSOR FOR ANY LOSS OR DAMAGEOF ANY KIND INCURRED AS A RESULTOF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURYOR PROPERTY DAMAGE, OF ANY NATUREWHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHERMATERIALS.

ALLTHIRD-PARTYMATERIALSARE PROVIDED “AS IS” ANDANY REPRESENTATIONOR WARRANTYOF OR

CONCERNINGANY THIRD-PARTYMATERIALS IS STRICTLY BETWEEN CUSTOMERAND THE THIRD-PARTY

OWNEROR DISTRIBUTOROF THE THIRD-PARTYMATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHERMATERIALS HEREUNDER ARE SOLELYPROVIDED TO

CUSTOMER ANDMAYNOT BE RELIEDON BY ANY OTHER PERSONOR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAYCOPIES BE DELIVERED TO, ANY OTHER PERSONWITHOUT

CERTIK’S PRIORWRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTYOR ANYONE ACTINGON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTYOR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYINGMATERIALS AND NO

SUCH THIRD PARTYSHALL HAVEANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYINGMATERIALS.

THE REPRESENTATIONSANDWARRANTIESOF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY,NO THIRD PARTYOR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTYOR OTHER BENEFICIARY OF SUCH REPRESENTATIONS ANDWARRANTIES AND NO

SUCH THIRD PARTYSHALL HAVEANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONSOR WARRANTIESOR ANY MATTERSUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCEOF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTSOR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY,OR OTHER ADVICE.

CertiK Securing theWeb3World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Alpenglow Security
Assessment

Certificate Assessment Date:
August 28, 2025

Copyright © CertiK

	Executive Summary
	Vulnerability Summary
	3
	0
	2
	0
	0
	S ummary
	A ppendix
	Introduction
	Scope of the Auditing
	Summary of Findings
	Limitations
	Mobile Application Audit Summary
	Threat Vectors Being Reviewed
	Dependency Confusion / Supply Chain attacks
	Insecure Data Storage
	Insecure Cryptographic Primitives
	Memory Manipulation
	Hard-coded Secrets

	Summary Review Results
	Dependency Confusion / Supply Chain attacks
	Insecure Data Storage
	Insecure Cryptographic Primitives
	Memory Manipulation
	Hard-coded Secrets

	SDK Audit Summary
	Threat Vectors Being Reviewed
	Dependency Confusion / Supply Chain attacks
	Data Storage
	Cryptographic Primitives
	Hard-coded Secrets
	Data Handling

	Summary Review Results
	Dependency Confusion / Supply Chain attacks
	Data Storage
	Cryptographic Primitives
	Data Handling

	Front-End Audit Summary
	Threat Vectors Being Reviewed
	Dependency Confusion / Supply Chain attacks
	Data Storage
	Cryptographic Primitives
	Hard-coded Secrets
	Data Handling

	Summary Review Results
	Dependency Confusion / Supply Chain attacks
	Data Storage
	Insecure Cryptographic Primitives
	Code Injection/Cross-Site Scripting
	Hard-coded Secrets

	5
	Description
	Recommendation
	Alleviation
	FRONTEND USE INSECURE CRYPTOGRAPHIC PRIMITIVES
	Recommendation
	Alleviation

	GLOBAL-03
	RISKY IMPLEMENTATION ON MEMORY FREE OPERATION
	Recommendation
	Alleviation
	Recommendation
	Alleviation

	GLOBAL-05
	POTENTIAL INTEGER OVERFLOW RISK IN DATA HANDLING.
	Recommendation
	Alleviation
	Finding Categories
	Checksum Calculation Method

